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Primary production and how to model it

• Types of producers and production rates

• Measurement of primary production

• Mechanisms and models – PI curves and blooms

• Models of nutrient limitation, succession and biodiversity

• Budgets

• Synthesis

Topics

CO2 + 2H2A CH2O + 2A + H2O
Light

Pigments



Types of primary producers

Phytoplankton and microphytobenthos: microscopic, high P/B ratio (>50)

Others: macroscopic, low P/B ratio, shallow waters or intertidal

Pelagic and benthic, microscopic and macroscopic

Producer Nutrient source Examples

Phytoplankton Water column Diatoms/dinoflagellates

Microphytobenthos Water column, sediment 

pore water

Penate diatoms

Macroalgae

(seaweeds)

Water column Fucus, Laminaria, Ulva

Saltmarsh plants Sediment Spartina

Seagrasses (SAV) Sediment and water Zostera, Posidonia



Ecosystem relevance

Phytoplankton primary production: 200-360 X 1014 gC y-1 (98.9%)

Global distribution of chlorophyll from satellite data

Data fromSEAWIFS, summer in the northern hemisphere (1998-2001)

Chlorophyll a (mg m-3)



Phytoplankton

Some examples

Diatoms

Dinoflagellates

Coccoliths



Management relevance

This (non-toxic) Noctiluca bloom (California) led to coastal resource impairment.

Harmful Algal Bloom (HAB) events

Courtesy P.J.S. Franks, WHOI



Management relevance

Cyanobacteria bloom in the Potomac estuary, near Washington D.C.

Harmful Algal Bloom (HAB) events

Photo courtesy of W. Bennett USGS



Management relevance

Toxic algae killed 26 million salmon in Chilean aquaculture, 2016.

Harmful Algal Bloom (HAB) events



Management relevance

Impact of eutrophication on submerged aquatic vegetation (SAV) and fisheries.

Macroalgal bloom in Florida Bay, USA

(mg m-3)

Courtesy Brian Lapointe, Harbor Branch Oceanographic Institute.



Eutrophication in the Yellow Sea

These macroalgal blooms have occurred annually for the last few years

Ulva prolifera in Jiaozhou Bay, NE China, 2008

Chlorophyll a (mg m-3)



Eutrophication in the Yellow Sea

These macroalgal blooms have occurred annually for the last few years

Ulva prolifera in Jiaozhou Bay, NE China, 2013

Chlorophyll a (mg m-3)



Eutrophication in the Yellow Sea

These macroalgal blooms have occurred annually for the last few years

Ulva prolifera in Rizhao, NE China, 2015

Chlorophyll a (mg m-3)



Kelp (Laminaria japonica) in Sanggou Bay, China

Kelp cultivation yields eighty-five thousand tons per year in this 140 km2 bay.



Productivity of different ecosystems (kg C m-2 y-1)

Marine producers
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Productivity, mean biomass, turnover, and 

chlorophyll in different ecosystems

Productivity per unit area is much higher inshore, but the open ocean is

much more vast.

Area

(106 km2)

Net production 

(g C m-2 y-1)

Biomass

(kg C m-2)

Turnover

(P/B, y-1)

Chlorophyll

(g m-2)

Open ocean 332 125 0.003 42 0.03

Upwelling 0.4 500 0.02 25 0.3

Shelf 27 300 0.001 300 0.2

Macroalgae/reefs 0.6 2500 2 1.3 2

Estuaries 1.4 1500 1 1.5 1

Total marine 361 155 0.01 0.05

Terrestrial ecosystems 145 737 12 0.061 1.54

Marshes 2 3000 15 0.2 3

Lakes and rivers 2 400 0.02 20 0.2

Total continental 149 782 12.2 0.064 1.5

Whittaker & Likens, 1975. The Biosphere and Man. Primary productivity of the biosphere. Springer-Verlag.



Measurement of primary production

in marine and freshwater systems

Different methods are used for different producers. Upscaling may be

done using models, including GIS, remote sensing, and dynamic

simulation.

Producer Indicator Method Units

Phytoplankton & Biomass Chlorophyll a (filtered sample) mg L-1

microphytobenthos Production 14C, O2 (incubation) d-1

Seaweeds Biomass Cropping g DW m-2

Seagrasses Production O2 (incubation), cropping g C m-2 d-1

Saltmarsh Biomass Cropping g DW m-2

Production O2 (incubation), cropping g C m-2 d-1



Saltmarsh production estimated by 

cropping, NDVI, and bathymetry

NDVI = (Near_Infrared - Red) / (Near_Infrared + Red) Near_Infrared and Red are two satellite image bands. NDVI ranges 
between -1 and 1. Pigments absorb lots of energy in R, but barely any in NIR. Other objects absorb both spectra identically.



The PI curve – relationship between 
photosynthesis (P) and light energy (I)

Some producers display photosaturation, others display photoinhibition.
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Phytoplankton blooms and vertical mixing

Without physics, there is no bloom.

Integrated

production(GPP)

abcd

Integrated

respiration

aefd

Conditions for

blooming

abcd > aefd

Production and respiration
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Sverdrup, H.U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Int. Exp. Mer, 18: 

287-295



Phytoplankton blooms and tidal mixing in estuaries

Without physics, there is no bloom.

Ketchum (1954) Relation between circulation and planktonic populations in estuaries. Ecology 35: 191-200.

Phytoplankton growth: P0 = initial 

population, Pt = population at time t 

Freshwater 

inflow Q (m3s-1)

Tidal exchange 

with the ocean

Pt =  P0 ekt

Phytoplankton flushing: P0 = initial population, Pm = population after m 

tidal cycles, r = exchange ratio (proportion of estuary water which does 

not return each tidal cycle)

Pm =  P0 (1-r)m



Phytoplankton blooms and tidal mixing in estuaries

For phytoplankton to exist and potentially bloom in an estuary, growth must

balance flushing, i.e. k > -ln(1-r).

Ketchum (1954) Relation between circulation and planktonic populations in estuaries. Ecology 35: 191-200.

Combining the two equations (and 

expressing t in terms of m):
Pt =  P0 ekt Pm =  P0 (1-r)m

Growth Flushing

Pm = P0 emk(1-r)m

For a steady-state population , Pm = P0 :

k  = -ln(1-r)
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Phytoplankton blooms and tidal mixing  in estuaries

Ferreira et al., 2005. Ecological Modelling, 187(4) 513-523.

Lower growth rate required for systems with longer water residence time.

Exchange ratio (r)
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Biodiversity of phytoplankton in estuaries
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Ferreira, J.G., Wolff, W.J., Simas,  T.C., Bricker, S.B., 2005. Does biodiversity of estuarine phytoplankton 

depend on hydrology? Ecological Modelling, 187(4) 513-523.

Distribution of phytoplankton production across different species may

follow a Gaussian function.



Number of phytoplankton species as a function of 
water residence time

r = 0.93
p < 0.01
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Ferreira et al., 2005. Ecological Modelling, 187(4) 513-523.

Greater phytoplankton diversity with longer water residence time.



Water residence time and number of species

Ferreira et al., 2005. Ecological Modelling, 187(4) 513-523.

Greater phytoplankton diversity with longer water residence time.
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Simulation of growth for 

three hypothetical 

phytoplankton species
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Simulation of nutrient 
limited growth for 
three hypothetical 

phytoplankton species
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Nutrient limitation



The relationship between chlorophyll a

and nutrients

Tett, P., Gilpin, L., Svendsen, H., Erlandsson, C.P., Larsson, U., Kratzer, S., Fouilland, E., Janzen, C., Lee, J., 

Grenz, C., Newton, A., Ferreira, J.G., Fernandes, T., Scory, S., 2003. Eutrophication and some European waters 

of restricted exchange. Continental Shelf Research, 23, 1635-1671.

Maximum spring phytoplankton (chl a mg L-1)

Maximum winter DIN (mM)
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Why is there no relationship?

• Estuaries are not lakes

• Differences in residence time

• Range of turbidity

• Top-down pressure from filter-feeders such as clams

• Limiting factors vary

• Phytoplankton chlorophyll may not be the best, and is

certainly not the only, indicator

• Nevertheless, ‘old’ thinking still defines the OSPAR

COMPP approach to eutrophication assessment



Primary production budget for the Tagus 

estuary (t C y-1)

Benthic production accounts for 38% of total carbon removal.

Pelagic producers Benthic producers

Phytoplankton*1 41160 -62% Microphytobenthos*2 4265 -6%

Seaweeds 13770 -21%

Saltmarsh vegetation*4 7700 -11%

Sub-total pelagic 41160 -62% Sub-total benthic 25735 -38%

Alvera-Azcárate, A., Ferreira, J.G. & Nunes, J.P., 2002. Modelling eutrophication in mesotidal and 

macrotidal estuaries - The role of intertidal seaweeds. Est. Coast. Shelf Sci. 57(4), 715-724

Phytoplankton (62%)

Seaweeds (21%)

Saltmarsh (11%)

Microphytobenthos (6%)

*1 – EcoWin2000 ecological model, Ferreira (2000)
*2 – Modelling and field measurements, Serôdio & Catarino (2000)
*3 – Modelling and field measurements, Alvera-Azcárate et al, (2002)
*4 – Modelling and field measurements, Simas et al. (2001)



Synthesis

• Primary producers in the sea occur in many forms

• An understanding of primary production is critical for

studies of food webs, aquaculture, and eutrophication

• Dynamic models relate primary production to light

availability, underwater light climate, hydrodynamics,

nutrients, and top-down control;

• Mass balance simulations of primary production help to

understand how coastal systems function.

http://ecowin.org/sima
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